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ABSTRACT 

A FORTRAN-oriented and an Ada-oriented design for the same sys- 
tem are compared to learn whether an essentially different de- 
sign was produced using Ada. The designs were produced by an 
experiment that involves the parallel development of software 
for a spacecraft dynamics simulator. Design differences are 
identified in the use of abstractions, system structure, and 
simulator operations. 
different, this result may be influenced by some special charac- 
teristics discussed in the paper. 

Although the designs were significantly 

INTRODUCTION 

Some early experiences using Ada for scientific applications 

like a FORTRAN design." As part of an experiment on the effec- 
tiveness of Ada, the experiment planners identified the follow- 
ing factors that were believed to be prerequisites for obtaining 
a new design, one that would take full advantage of Ada features: 

( a - n * -  \ - - a  r [ l l )  showed that the des ign of ths Ada system "looked 

e The opportunity to set aside previous designs for the 

0 Training in design methods that exploit Ada's capabili- 

system and work directly from system requirements 

ties 

0 The encouragement to explore these new design methods 

The purpose of this paper is to address the following question: 

When these prerequisites were satisfied, was a different 
design produced? 

The experiment in progress is being conducted by the Software 
Engineering Laboratory (SEL) [2] of the National Aeronautics and 
Space Aaministration's Goddard Space Flight Center (NASA/GSFC). 
NASA/GSFC and Computer Sciences Corporation (CSC) are cosponsors 
of the experiment, which is supported by personnel from all 

*Ada 1s a registered trademark of the U.S. Government (Ada Joint 
Program Off ice). 

**Authors' Address: Computer Sciences Corporation, System 
Sciences Division, 8728 Colesville Road, Silver Spring, 
Maryland 20910 
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three SEL participating organizations (NASA/GSFC, CSC, and the 
University of Maryland). 

The objective of the overall experiment is to determine the 
effectiveness of Ada for flight dynamics software development at 
NASA/GSFC. ( 1 2 1  describes the characteristics of this environ- 
ment.) The experiment, begun in January 1985, consists of the 
parallel development, in FORTRAN and Ada, of the attitude dy- 
namics simulator for the Gamma Ray Observatory (GRO) spacecraft. 
When completed, the system is expected to comprise approximately 
40,000 source lines of code to execute on a DEC VAX-11/780 com- 
puter. Additional information about the experiment is presented 
in [ 3 1 .  

Although the FORTRAN and Ada development teams are proceeding in 
parallel, the FORTRAN team is further along, due, in part, to 
the time necessary to train the Ada team in the Ada language and 
design methods. Both teams have completed the critical design 
review. This paper reports on a preliminary review of the de- 
sign processes and products of both teams in order to address 
the questian of interest. The design problem is discussed, an 
overview of the designs is presented, design processes and prod- 
ucts are compared, and the results and their implication for 
answering the question are summarized. 

THE DESIGN PROBLEM 

The purpose of the GRO dynamics simulator is to test and eval- 
uate GRO flight software under conditions that simulate the ex- 
pected in-flight environment as closely as possible [ 4 1 .  The 
simulator is represented as a control problem in Figure 1. The 
right side of the figure models the onboard computer (OBC) flight 
software. The OBC Model uses sensor data provided by the Truth 
Model to determine the estimated attitude. Comparing the esti- 
mated attitude to the desired spacecraft attitude, the OBC 
determines the attitude error. Control laws are modeled within 
the 06C to generate attitude actuator commands that will reduce 
the attitude error. 

The Truth Model, the left side of Figure 1, simulates the re- 
sponse of the attitude hardware. The Truth Model updates and 
interpolates the spacecraft ephemeris and environmental torques, 
integrates the spacecraft equations of motion, and generates the 
true attitude of GRO. The Truth Model produces sensor data cor- 
responding to the attitude, for use by the OBC Model. 

Both teams have the task of designing and developing software to 
simulate the attitude dynamics and control shown in Figure 1. 
An additional requirement on the FORTRAN team is to extract its 
Truth Model and integrate it with the Goddard GRO Simulator 
(GGS), a real-time simulator of the GRO OBC flight software. 

F.1.3.2 
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F i g u r e  1. GRO Dynamics S imula tor  a s  a C o n t r o l  Problem 

OVERVIEW OF THE DESIGNS 

I n  t h i s  h i g h - l e v e l  look a t  e a c h  d e s i g n ,  t h e  o v e r a l l  s y s t e m  
s t r u c t u r e  and t h e  e x t e r n a l  and i n t e r n a l  d a t a  f l o w s  a re  d i s -  
c u s s e d .  Some simple q u a n t i t a t i v e  measures a re  e x t r a c t e d  from 
each des ign .  

System S t r u c t u r e  . 

A top-level  s y s t e m  d i a g r a m  f o r  e a c h  d e s i g n  i s  shown i n  F i g u r e s  2 
and 3. To f a c i l i t a t e  compar i son ,  t h e  i d e n t i c a l  s y s t e m  i n p u t  and 
o u t p u t  o b j e c t s  a r e  p l a c e d  a t  t h e  t o p  and bo t tom,  r e s p e c t i v e l y ,  
of e a c h  f i g u r e .  The FORTRAN s y s t e m  c o n s i s t s  of t h e  f i v e  s u b s y s -  
tems i n  t h e  midd le  of F i g u r e  2 .  The Ada s y s t e m  is t h e  p r o d u c t  
o f  a d e s i g n  method ( d i s c u s s e d  below) t h a t  d i f f e r s  f rom t h e  
FORTRAN team method. So, a l t h o u g h  "subsys tem" w i l l  be used  t o  
r e fe r  t o  t h e  major  Ada u n i t s ,  t h e y  a r e ,  i n  f a c t ,  Ada packages .  
Fur thermore ,  t h e  s i m u l a t i o n  s u p p o r t  subsys t em i n  F i g u r e  3 i s  
r e a l l y  a c o l l e c t i o n  of  t h r e e  Ada packages  f o r  t h e  SimUlat iOn 
timer, p a r a m e t e r s ,  and g round  commands. T h e  Ada s y s t e m  a p p e a r s  
i n  F i g u r e  3 a s  f i v e  s u b s y s t e m s  o n l y  t o  i n v i t e  c o m p a r i s o n  w i t h  
FORTRAN r e g a r d i n g  t h e  h i g h - l e v e l  da t a  f low.  

The FORTRAN s y s t e m  is  composed of three d i s t i n c t  p rograms:  Pro-  
f i l e ,  P o s t p r o c e s s o r ,  and S i m u l a t o r  ( T r u t h  Model, OBC Model, and  
S imula t ion  Contro1-1/0) .  AS s e p a r a t e  programs,  each i n t e r a c t s  
w i t h  t h e  u s e r ,  as  shown by t h e  e x t e r n a l  d a t a  f lows  i n  F i g u r e  2 .  
The ass ignment  of p r o c e s s i n g  f u n c t i o n s  t o  e a c h  s u b s y s t e m  i s  
shown i n  F i g u r e  4 for b o t h  t h e  FORTRAN and Ada s y s t e m s .  
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Figure 2 .  FORTRAN System Diagram 

9 w 
\ I = I  

Figure 3 .  Ada System Diagram 
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F i g u r e  4 .  A l l o c a t i o n  o f  F u n c t i o n s  Among Subsys t ems  

The Ada sys tem is  d e s i g n e d  a s  a s i n g l e  program, w i t h  e a c h  sub-  
s y s t e m  pe r fo rming  t h e  f u n c t i o n s  l i s t ed  i n  F i g u r e  4 .  The OBC 
Model is f u n c t i o n a l l y  s imilar  t o  its FORTRAN c o u n t e r p a r t .  The 
A d a  T r u t h  Model i n c o r p o r a t e s  t h e  p r o c e s s i n g  per formed i n  t h e  
FORTRAN P r o f i l e  i n  a d d i t i o n  t o  t h e  FORTRAN T r u t h  Model. (The 
FORTRAN user h a s  t h e  o p t i o n  o f  c h o o s i n g  n o t  t o  u s e  P r o f i l e  and  
hav ing  t h o s e  c a l c u l a t i o n s  pe r fo rmed  i n  t h e  T r u t h  Model, t h e r e b y  
m i r r o r i n g  t h e  A d a  d e s i g n . )  The Ada d e s i g n  p u l l s  a p a r t  t h e  simu- 
l a t i o n  c o n t r o l  f u n c t i o n s  from t h e  User I n t e r f a c e ;  t h e s e  p r o c e s s -  
i n g  e l e m e n t s  a r e  combined i n  t h e  FORTRAN d e s i g n .  However, t h e  
User I n t e r f a c e  i n  Ada i n c l u d e s  t h e  r e s u l t s  p r o c e s s i n g  t h a t ,  i n  
FORTRAN, is delegated t o  a s e p a r a t e  program, t h e  Postprocessor .  
Both d e s i g n s  have  major u n i t s  named T r u t h  Model and  OBC Model t o  
r e f l e c t  t n e  u n d e r l y i n g  c o n t r o l  problem i l l u s t r a t e d  i n  F i g u r e  1. 

E x t e r n a l  Data Flow 

Botn d e s i g n s  i n  F i g u r e s  2 and 3 show communica t ion  w i t h  n i n e  
e x t e r n a l  o b j e c t s  ( f i l e s  o r  d e v i c e s ) .  E i g h t  of  t h e  n i n e  a re  
i d e n t i c a l ,  t h e  d i f f e r e n c e  b e i n g  t h e  p r o f i l e  data  f i l e  i n  FORTRAN 
and t h e  d i s p l a y  f o r m a t  t i l e  i n  A d a .  The FORTRAN d e s i g n  requi res  
t h e  p r o f i l e  d a t a  f i l e  t o  d e c o u p l e  t h e  P r o f i l e  and T r u t h  Model 
p r o c e s s i n g .  The u s e  of  a d i s p l a y  f o r m a t  f i l e  i n  t h e  Ada d e s i g n  
is m o t i v a t e d  by r e u s a b i l i t y  c o n s i d e r a t i o n s .  By keep ing  t h e  de- 
t a i l e d  f o r m a t s  o f  menus and d i s p l a y s  on  a n  e x t e r n a l  f i l e ,  t h e  
user i n t e r f a c e  is eas ie r  t o  reuse o n  a f u t u r e  s i m u l a t o r .  
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The number o f  e x t e r n a l  d a t a  f l o w s  1.5 g r e a t e r  i n  t h e  FORTRAN de- 
s i g n ,  as  shown i n  Table  l. Most o f  t h e  a d d i t i o n a l  d a t a  f l o w s  
ar ise  from t h e  s e p a r a t i o n  of t h e  FORTRAN d e s i g n  i n t o  t h r e e  pro- 
grams,  r e q u i r i n g  more da ta  f l o w s  t o  and f r o m - t h e  u s e r  and  d i s -  
t i n c t  data f l o w s  t o  t h e  p r o f i l e  data  and r e s u l t s  o u t p u t  f i l e s  
t h a t  d e c o u p l e  t h e  programs.  A l s o ,  as  shown i n  F i g u r e  2 ,  t h e  
s t a r  c a t a l o g  e x t e r n a l  f i l e  is r e q u i r e d  i n  b o t h  P r o f i l e  and  t h e  
T r u t h  Model. 

Table  1. Simple  Q u a n t i t a t i v e  Des ign  C h a r a c t e r i s t i c s  

MPARATE PROQRAMS 

TASKS 

EXTERNAL E M E S  

EXTERNAL DATA ROWS 

INTERNAL DATA ROWS 

SUBROCmNEWSUBPROaRAMS 

PACKAGES 

FORTRAN DENQN 

3 

6 (IN SIMULATOR 
PROQRAM) 

9 

18 

3 

ADA DUUQN 

1 

6 

S 

10 

a 
s2 
101 

m-mm 

The A d a  d e s i g n  ( F i g u r e  3) i n v o l v e s  t h e  minimum number of e x t e r -  
n a l  data  f l o w s ,  The  detai ls  of a c c e s s i n g  each f i l e  a re  c o n f i n e d  
t o  a s i n g l e  subsys tem.  

I n t e r n a l  Data Flow 

Table  1 shows t h a t  t h e  Ada d e s i g n  h a s  n i n e  i n t e r n a l  da ta  f l o w s ,  
v e r s u s  t h r e e  f o r  t h e  FORTRAN d e s i g n .  O f  c o u r s e ,  no more i n t e r -  
n a l  data  f lows  a re  poss ib l e  i n  t h e  FORTRAN case because P r o f i l e  
and t h e  P o s t p r o c e s s o r  a re  s e p a r a t e  programs.  T h e  th ree  remain-  
i n g  subsys t ems  i n  t h e  FORTRAN d e s i g n  exchange d a t a  w i t h  o n e  
a n o t h e r  v i a  COMMON b locks .  (A l though  t h e  u s e  of  COMMON h a s  been  
c r i t i c i z e d ,  e m p i r i c a l  resu l t s  f rom t h e  f l i g h t  dynamics  e n v i r o n -  
ment has shown i t  t o  be e f f e c t i v e  [SI.) 

Although t h e  number o f  d i s t i n c t  data f lows  ( c o n n e c t i o n s )  between 
subsys t ems  i s  g r e a t e r  i n  Ada, f ewer  da t a  items p a s s  o v e r  these 
c o n n e c t i o n s  t h a n  i n  FORTRAN. An example w i l l  show how v a r i o u s  
Ada l anguage  f e a t u r e s  h e l p  t o  r e d u c e  t h e  p r o l i f e r a t i o n  o f  d a t a  
i t e m  names. 

Bo th  d e s i g n s  p r o v i d e  f o r  t h e  r e c o r d i n g  of s i m u l a t i o n  a n a l y s i s  
resu l t s .  I n  FORTRAN ( F i g u r e  2 ) ,  t hese  r e su l t s  p a s s  f rom t h e  

I 
8 
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Truth Model and OBC Model via COMMON to the Simulation Control- 
1/0 Subsystem, which writes them to the external results output 
file. I n  Ada (Figure 3 1 ,  the internal data flows from the Truth 
Model, OBC Model, and Sirnulation Control carry results data to 
the User lnterface, which writes them to the results output file. 

In the FORTRAN design, the results data record comprises 4 3  dis- 
tinct variable names. In Ada, the results are passed under a 
single identifier, Results-Data, when a procedure, Put Results- 
Data, in the User Interface is called by the Truth Model, OBC 
.Model, or Simulation Control. This reduction in the number of 
identifiers is possible because of the use of Ada's variant rec- 
ord feature. In the example, Results-Data can be either an 
executed ground command, parameter upaate, error message, or  
analysis result. In Ada, the user can declare Results-Data as 
type RESULT, defined as a record type with a variant part as 
follows : 

type RESULT-KIND is (Error-Msg, Log-Command, Results, 
Parameters) ; 

type  p,ESQLT (Kir,d: P,ESGLT RIND:2R=sul t s ;  is - 
record 
case Kind is 
when Error-Msg I Log-Command => 
Result-Line: STRING (1 ... 8 0 ) ;  

when Results I Parameters =>  
Result-Rec: PARAM-RESULT; 

end case; 
end record; 

Because of such features, the count of data items is consistently 
lower over the Ada data flows than over the FORTRAN data flows. 

COMPARING DESIGN PROCESSES 

Differences in the design processes help to explain the differ- 
ences in the delivered design products of the FORTRAN and Ada 
teams. Two aspects of the design process--critical design 
"drivers" and the use of design abstractions--will be examined. 

Design Drivers 

The design drivers--critical characteristics that strongly in- 
fluence design decisions--are different for the two teams. The 
FORTRAh team was influenced by its real-time processing require- 
ment, previous designs, and schedule concerns. The Ada team was 
influenced by its training in alternative design methods and the 
opportunity to apply those methods. 

Although the basic requirements for each team are identical, the 
FORTRAN team has a real-time requirement, noted earlier, to in- 
tegrate its Truth Model Subsystem with the Goddard GRO Simula- 
tor. To help ensure that the Truth Model will complete its 
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p r o c e s s i n g  i n  t i m e  t o  meet t h i s  r e q u i r e m e n t ,  t h e  FORTRAN d e s i g n  
removes t h o s e  c o m p u t a t i o n s  t h a t  a re  n o t  s t r o n g l y  a t t i t u d e  de- 
p e n d e n t  from t h e  T r u t h  Model t o  a separate P r o f i l e  Program. 
Then, i n s t e a d  of  pe r fo rming  t h e s e  c a l c u l a t i o n s  ( s u c h  a s  e n v i r o n -  
m e n t a l  t o r q u e  and  m a g n e t i c  f i e l d )  e a c h  i t e r a t i o n ,  t h e  T r u t h  
Model c a n  s i m p l y  read t h e  n e c e s s a r y  v a l u e s  from t h e  P r o f i l e  da ta  
se t  ( a s  shown i n  F i g u r e  2 ) .  T h i s  s e p a r a t i o n  of t h e  P r o f i l e  ca l -  
c u l a t i o n s  from t h e  T r u t h  Model is f u r t h e r  encouraged  by t h e  pre- 
v i o u s  d e s i g n s  of dynamics  s i m u l a t o r s  i n  FORTRAN, which a l s o  had  
separate P r o f i l e  Programs. The FORTRAN d e s i g n  a l so  provides t h e  
o p t i o n ,  fo r  greater a c c u r a c y ,  of pe r fo rming  t h e  P ro f i l e  c a l c u l a -  
t i o n s  w i t h i n  t h e  T r u t h  Model. 

The Ada d e s i g n ,  n o t  r e q u i r e d  t o  meet t h e  real-time c o n s t r a i n t  i n  
t h i s  expe r imen t ,  i n c l u d e s  i n  i t s  T r u t h  Model t h e  c a l c u l a t i o n s  
performed i n  t h e  FORTRAN P r o f i l e  Program and FORTRAN T r u t h  Model. 
It w i l l  be of i n t e r e s t  l a t e r  t o  t e s t  whether  t h e  real-time re- 
q u i r e m e n t  c a n  be m e t  by t h e  Ada d e s i g n  and  by t h e  FORTRAN d e s i g n  
unde r  t h e  o p t i o n  of pe r fo rming  P r o f i l e  c a l c u l a t i o n s  i n s i d e  i ts  
T r u t h  Model. 

A s t r o n g  d r i v e r  of t h e  FORTRAN d e s i g n  is t h e  p r e s e n c e  of a p r e -  
v i o u s  d e s i g n ,  u sed  s u c c e s s f u l l y  o n  p a s t  s i m u l a t o r s .  The p a r t i -  
t i o n i n g  i n t o  subsys t ems  i n  F i g u r e  2 is  i d e n t i c a l  t o  t h a t  o f  
p r e v i o u s  s i m u l a t o r s .  Wi th  t h i s  l e g a c y ,  t h e  i n t e r f a c e s  between 
subsystems--a  f r e q u e n t  problem area w i t h  o r i g i n a l  d e s i g n s - - a r e  
c l a r i f i e d  e a r l y  i n  t h e  p r o j e c t .  Wi th  t h e  i n t e r f a c e s  r e l a t i v e l y  
c lear ,  t h e  subsys t ems  c a n  be a s s i g n e d  t o  i n d i v i d u a l s  or small 
s u b g r o u p s  fo r  de t a i l ed  d e s i g n  and  implemen ta t ion  w i t h  t h e  “de- 
s i g n  enve lope“  f a i r l y  w e l l  e s t a b l i s h e d .  

The Ada d e s i g n  was i n t e n d e d  t o  be a n  independen t  o n e ,  f r e e  of  
t h e  i n f l u e n c e  of p a s t  s i m u l a t o r  d e s i g n s .  The subsys t ems  t h a t  
e v o l v e d  were t h e  p r o d u c t  of l e n g t h y  d e s i g n  d i s c u s s i o n s .  The 
s i m i l a r i t y  o f  t h e  Ada subsys tems t o  t h o s e  i n  FORTRAN owes more 
t o  b o t h  d e s i g n s  r e f l e c t i n g  t h e  u n d e r l y i n g  c o n t r o l  problem o f  
F i g u r e  1, r a t h e r  t h a n  t h e  Ada d e s i g n  copy ing  t h e  FORTRAN d e s i q n .  

The s c h e d u l e  c o n s t r a i n t s  on  t h e  teams were d i f f e r e n t .  To h e l p  
e x p l a i n  t h i s  d i f f e r e n c e ,  consider t h a t  t h e  dynamics s i m u l a t o r  is 
a r o u t i n e  e l emen t  o f  t h e  set of  ground s u p p o r t  s o f t w a r e  f o r  a 
s a t e l l i t e  m i s s i o n .  The e n t i r e  complement o f  s o f t w a r e  h a s  r i g i d  
s c h e d u l e  c o n s t r a i n t s  der ived  from l a u n c h  dates .  FORTRAN h a s  
b e e n  used  i n  t h e  p a s t  and i s  b e i n g  used  now f o r  t h e  GRO a t t i t u d e  
g round  s u p p o r t  software. I n  s u c h  an  env i ronmen t ,  i t  i s  n a t u r a l  
t h a t  t h e  FORTRAN team was p e r c e i v e d  a s  b u i l d i n g  t h e  r ea l ,  opera- 
t i o n a l  s o f t w a r e ,  even  though t h e  Ada p r o d u c t  i s  a l s o  e x p e c t e d  t o  
pass a c c e p t a n c e  t e s t i n g  and  t o  pe r fo rm i n  a n  o p e r a t i o n a l  e n v i -  
r onmen t . 
The  FORTRAN team g e n e r a l l y  had more s c h e d u l e  p r e s s u r e  t h a n  d i d  
t h e  Ada team, and  t h i s  d i f f e r e n c e  a f f e c t e d  t h e  d e s i g n  p r o d u c t s  
and  methods. Both teams were cha rged  w i t h  d e v e l o p i n g  o p e r a t i o n a l  
s o f t w a r e ,  b u t  t h e  Ada team was a l s o  encouraged  t o  t r y  Ada-related 
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design methods as a way of understanding their usefulness in the 
flight dynamics environment. The FORTRAN team had more exclu- 
sively practical concerns of meeting the development schedule. 

DeSiqn Abstractions 

The use of abstraction was also different for each team. The 
FORTRAN design products provide evidence of the procedural ab- 
straction carried forward from earlier designs. An individual 
subroutine may be thought of as a black box that will, for spec- 
ified values of its input variables, produce the same specific 
output values every time it is invoked. The input and output 
quantities are transmitted via argument lists or COMMON. This 
procedural abstraction can also be used at higher levels in the 
system. For example, the Truth Model is a procedural abstrac- 
tion possessing an identifiable function (computing the current 
attitude state of the spacecraft), specific input quantities 
(primarily parameter values and actuator commands), and specific 
output quantities (primarily sensor data reflecting the time 
attitude state). 

Functional processing at the lower levels is organized around 
objects in the problem domain such as specific sensors and ac- 
tuators. For example, the Truth Model contains a sensor model- 
ing component that calls seven routines: one for each sensor 
type. Anyone making a code modification due to a requirement 
change relating to the fine Sun sensor will find a subroutine, 
FSSMOD, described as modeling the fine Sun sensor. The use of 
COMMON also reflects an orientation to objects. For example, 
one COMMON block holds gyro parameters; another has FSS param- 
eters; and so on. 

.“L - -- n-n... >-- : - -  r‘ne r u n i n n u  uasry i i  also has elements ~f bei i ig  object G i i e i i t S d .  

Concurrent processes are used in the FORTRAN design to model the 
concurrency that exists in the operational use of the simulator. 
For example, an analyst may interrupt the processing to change 
the value of a parameter. System services of the DEC VAX-11/780 
VMS operating system are used to implement the concurrent proc- 
esses. Both the object-oriented features and the use of con- 
currency are characteristics of past FORTRAN simulators, 
demonstratinq that reuse of design is the operative high-level 
approach in the FORTRAN design. 

The Ada design process was significantly different from that of 
the FORTRAN team. The differences begin to emerge even before 
the design phase of the project. 

The functional specifications and requirements document 1 4 1  for 
the GRO dynamics simulator is influenced by the design legacy of 
dynamics simulators developed within the orqanization. For ex- 
ample, the document is organized by major subsystem because that 
particular partitioning into subsystems (Figure 2) has persisted 
through several simulator project teams. In effect, the highest 
level desiqn is completed during the requirements analysis phase. 
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This encroachment of design on requirements actually provides a 
welcome headstart to a team who will be following that design 
and taking maximum advantage Of the existing code based on that 
design. While such a document fit in well with the projected 
work of the FORTRAN team, it was not as helpful to the Ada team, 
who wanted to produce an independent design, uninfluenced by 
previous simulator designs. 

A way out of this dilemma--the influence of the previous design 
present in the requirements--was to recast the requirements in a 
different form. The Ada team developed a specification for the 
dynamics simulator using the Composite Specification Model (CSM) 
[6], which represents a system from the functional, dynamic, and 
contextual views. Recasting the system requirements using CSM 
served other purposes as well: It provided a testbed for the 
CSM as a specification tool, and it allowed the Ada team, who 
was relatively inexperienced in the application area, to analyze 
the system requirements in a systematic manner. The result of 
this exercise was a specification document [7] and a better 
understanding of the needs of the system. For example, included 
in [7] are PDL-like process specifications describing the re- 
quired functional processing. The specification succeeded in 
removing the inherited design from the system requirements and 
served as a starting point for the Ada design. 

The Ada language itself influenced the design team because the 
team members knew that useful design abstractions could be rep- 
resented in Ada. The team had been exposed to object-oriented 
design, tne process abstraction methodology, and other approaches 
during their training program, which included the development in 
Ada of a 5700-line training exercise [ 3 ] .  The principal design 
abstractions used by the team were the state machine abstraction 
and the representation of the system according to the orthogonal 
views of a seniority hierarchy and a parent-child hierarchy [ a ] .  
The state machines are conveniently implemented as Ada packages 
consisting of internal state data and a group of related proce- 
dures that operate on that state data. The Ada design product 
reflects this approach; the design includes 104 packages and 
69 sets of state variables. 

An instance of the seniority hierarchy is shown in Figure 5. 
The team's design approach is to build the system as layers of 
virtual machines [9]. For example, Figure 5 shows that the OBC 
package is senior to the Truth Model package. The arc between 
the two packages shows that OBC uses operations (subprograms) of 
the Truth Model. Arcs do not go from a package to one that is 
above it. In this way, each diagram expresses the relative 
seniority of the packages [lo]. The orthogonal parent-child (or 
inclusion) hierarchy provides for a package (like one of those 
in Figure 5) to be represented on a separate diagram in terms of 
its constituent elements; for example, subprograms, other pack- 
ages, and state data. 
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Figure 5. Ada Design: Seniority Hierarchy of Packages 

In summary, the Ada team was able to use effective design ab- 
stractions because they were confident that these abstractions 
could be preserved in an Ada implementation. 

COMPARING DESIGN PRODUCTS 

The design documents were examined to determine any significant 
differences. Some differences were noted earlier: the FORTRAN 
design involving three programs; the different assignment of 
functional processing to subsystems; and the data flow. Review 
of the design documents revealed two more fundamental differ- 
ences in the basic operation of each simulator, as specified by 
the designs. These key differences can be shown by tracing the 
operation of each simulator. 

Figure 6 shows the logical relationships amonq the five tasks 
that constitute the FORTRAN simulator program (i.e., excluding 
Profile and the Postprocessor). The task called GROSS in Fiq- 
ure 6 is the main process started by the user via a RUN command. 
GROSS remains an active process throughout the simulation run, 
displaying a menu of user options at the user's terminal and 
remaining ready to respond to a user request. 

The SIMCON process, created by GROSS, controls the simulation. 
As suggested by the control loop in Figure 1, the simulation 
involves iterating over the Truth Model and the OBC Model. 
SIMCON directs this iteration. SIMCON wakes up the Truth Model 
(TM) process, which computes the attitude state and deposits the 
corresponding sensor data into a global COMMON section. When TM 
is finished, it goes into hibernation, setting an event flag 
that signals SIMCON to wake up the OBC process. OBC obtains the 
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m curren t  s e n s o r  d a t a  l e f t  by TM, models  t h e  c o n t r o l  laws, and 

g e n e r a t e s  a c t u a t o r  commands t h a t  a re  p l a c e d  i n  a g l o b a l  COMMON 
s e c t i o n  f o r  access by TM on t h e  n e x t  i t e r a t i o n .  I ts  work f i n -  
i s h e d ,  OBC h i b e r n a t e s ,  s i g n a l i n q  SIMCON t o  w a k e  up SIMOUT t o  
w r i t e  an a n a l y s i s  r e c o r d  t o  c a p t u r e  t h e  r e s u l t s  o f  t h i s  i t e r a -  
t i o n .  When SIMOUT h i b e r n a t e s ,  SIMCON w a k e s  up TM t o  b e g i n  t h e  
nex t  i t e r a t i o n .  

I 

I I 
I I 
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F i g u r e  6 .  FORTRAN Design: H i e r a r c h y  of E x e c u t i o n  T a s k s  

The FORTRAN user can set  t h e  c y c l e  time, w h i c h  is  t h e  amount o f  
t i m e  t h a t  t h e  s i m u l a t i o n  c lock  i s  incremented. The c y c l e  t i m e  
d e t e r m i n e s  when e v e n t s  occur  i n  t h e  s i m u l a t i o n ,  f o r  example ,  
when th rus t e r s  f i r e ,  when new s e n s o r  d a t a  a r e  g e n e r a t e d ,  and 
when t h e  s p a c e c r a f t  a t t i t u d e  s t a t e  is updated .  The FORTRAN de-  
s i g n  t h u s  i n v o l v e s  i t e r a t i n g  ove r  t h e  three p r o c e s s e s  (TM, OBC, 
and SIMOUT),  wi . th  t h e  u s e r - s e t t a b l e  c y c l e  t i m e  d e t e r m i n i n g  when 
e v e n t s  occur .  

F i g u r e  5 shows an e x c e r p t  from t h e  Ada d e s i g n  c o r r e s p o n d i n g  t o  
t h e  s i m u l a t o r  o p e r a t i o n .  The  n o t a t i o n  i n  t h e  f i g u r e  needs some 
e x p l a n a t i o n .  The rounded r e c t a n g l e s  a r e  Ada packaqes .  C i r c l e s  
d e n o t e  o f f - p a g e  c o n n e c t o r s ,  w i t h  t h e  l abe l s  El, E2, e tc . ,  r e -  
f e r r i n g  t o  e x t e r n a l  f i l e s  and t h e  l a b e l  1 d e n o t i n q  package num- 
ber 1 from a d i f f e r e n t  diagram. Arcs show t h e  d i r e c t i o n  o f  a 
subprogram c a l l  from a subprogram i n  t h e  c a l l i n g  package t o  a 
subproqram i n  t h e  c a l l e d  package. More d e t a i l  on t h e  d e s i g n  
n o t a t i o n  is  p r e s e n t e d  i n  [lo]. 

T h e  p lacement  of  packages  on d e s i g n  d i ag rams  s u c h  as  F i g u r e  5 
shows t h e  s e n i o r i t y  h i e r a r c h y  d e s c r i b e d  e a r l i e r .  Thus,  i n  F ig -  
ure  5 ,  t h e  S i m u l a t i o n  C o n t r o l  package i s  s e n i o r  t o  o t h e r  pack-  
a g e s  on t h e  d i ag ram;  t h a t  is, it uses s e r v i c e s  p rov ided  by t h e s e  
o t h e r  packages  and t h e y  do n o t  u s e  its s e r v i c e s .  T h e  t h r e e  
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packages a t  t h e  lowest  l e v e l  (which  t o g e t h e r  c o n s t i t u t e  t h e  s i m -  
u l a t i o n  support  s u b s y s t e m  o f  F i g u r e  3) are  j u n i o r  t o  t h e  pack-  
a g e s  h i g h e r  i n  t h e  d i a g r a m  and a s  s u c h  a re  n o t  t h e  o r i g i n  f o r  
any arcs t h a t  t e r m i n a t e  a t  h i g h e r  l e v e l  p a c k a g e s .  

T h i s  more de ta i led  e x a m i n a t i o n  of t h e  o p e r a t i o n  o f  e a c h  s imula-  
t o r  r e v e a l e d  two c lear  d i f f e r e n c e s  i n  t h e  Ada d e s i g n :  t h e  p a s -  
s i v e  role o f  t h e  T r u t h  Model and t h e  s e p a r a t e  t i m i n g  o f  t h e  OBC 
and t h e  T r u t h  Model. 

The Ada d e s i g n  r e p r e s e n t e d  by F i g u r e  5 shows t h a t ,  u n l i k e  t h e  
FORTRAN d e s i g n ,  t h e  OBC and t h e  T r u t h  Model are not a t  t h e  same 
l e v e l .  The OBC ca l l s  t h e  T r u t h  Model t o  o b t a i n  s e n s o r  d a t a  when 
the d a t a  are needed.  The T r u t h  Model is p a s s i v e ;  i t  p e r f o r m s  
p r o c e s s i n g  and g e n e r a t e s  s e n s o r  da ta  o n l y  when directed t o  d o  so. 

Both t h e  OBC and t h e  T r u t h  Model a r e  j u n i o r  t o  S i m u l a t i o n  Con- 
t r o l  i n  F i g u r e  5 ,  a n  a r r angemen t  t h a t  appears t o  m i m i c  t h e  
FORTRAN d e s i g n .  However, t h e  A d a  d e s i g n  notebook [ll], which 
p r o v i d e s  d e t a i l s  o f  t h e  ac tua l  ca l l s  made by S i m u l a t i o n  C o n t r o l ,  
shows t h e  A d a  d e s i g n  t o  be q u i t e  d i f f e r e n t .  Recall t h a t  t h e  

I n  t h e  Ada d e s i g n ,  t h e  t i m i n g  o f  t h e  OBC and t h e  T r u t h  Model is  
s e p a r a t e :  t h e  T r u t h  Model c y c l e  time is under  u s e r  c o n t r o l ;  OBC 
t i m i n g  is n o t .  The A d a  team c h o s e  t o  model f a i t h f u l l y  t h e  
s p a c e c r a f t  OBC f l i g h t  sof tware,  whose t i m i n g  i s  n o t  under  user 
c o n t r o l .  Because t i m i n g  and e v e n t  s c h e d u l i n g  a r e  c e n t r a l  e le-  
ments  i n  any  s i m u l a t i o n ,  t h i s  d i f f e r e n c e  i s  o f  a fundamen ta l  
n a t u r e  and d e m o n s t r a t e s  t h a t  t h e  A d a  team was a b l e  t o  go  back t o  
basic s y s t e m  r e q u i r e m e n t s  f o r  t h e i r  a n a l y s i s .  

cycle tiiiie i i i  FGiZTRAiu’ affected both t h e  OEC and the T r u t h  ???m!el. 

CONCLUSIONS 

The compar ison  o f  FORTRAN and  Ada d e s i g n s  h a s  r e v e a l e d  s i g n i f i -  
c a n t  d i f f e r e n c e s  i n  b o t h  t h e  d e s i g n  p r o c e s s e s  and p r o d u c t s .  I n  
t h i s  expe r imen t ,  t h e  Ada d e s i g n  h a s  been  shown t o  be d i f f e r e n t  
t o  a s i g n i f i c a n t  degree from t h e  FORTRAN d e s i g n .  Th1.s r e s u l t  
d i f f e r s  f rom t h a t  reported i n  [l] f o r  a n o t h e r  m o n i t o r e d  Ada de- 
velopment  p r o j e c t  i n  a d i f f e r e n t  env i ronmen t .  

The r e su l t s  have  i m p l i c a t i o n s  f o r  o t h e r  o r g a n i z a t i o n s  Contern- 
p l a t i n g  t h e  u s e  o f  Ada. T h i s  e x p e r i m e n t  l e d  t o  a d e s i g n  t h a t  
e x p l o i t s  Ada’s f e a t u r e s  f o r  e x p r e s s i n g  d e s i g n  a b s t r a c t i o n s .  
However, t h i s  r e s u l t  was s u p p o r t e d  by (1) t h e  u s e  o f  a s p e c i f i -  
c a t i o n  method, CSM, t o  c o u n t e r a c t  t h e  i n f l u e n c e  of d e s i g n - l a d e n  
r e q u i r e m e n t s ;  ( 2 )  t h e  e x p l i c i t  a l l o w a n c e  f o r  t h e  Ada team t o  
p u r s u e  new ciesign methods, n o t  r e q u i r i n g  t h e  team t o  t a k e  t h e  
less c o s t l y  r o u t e  of r e u s i n g  t h e  e x i s t i n g  d e s i g n ;  and ( 3 )  t r a i n -  
i n g  i n  a l t e r n a t i v e  d e s i g n  methods. 
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